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Abstract. A new approach is suggested to quantum differential calculus on certain quantum
varieties. It consists in replacing quantum de Rham complexes with differentials satisfying Leibniz
rule by those which are in a sense close to Koszul complexes from Gurevich (1991Leningrad
Math. J.2 801–28). We also introduce the tangent space on a quantum hyperboloid equipped
with an action on the quantum function space and define the notions of quantum (pseudo)metric
and quantum connection (partially defined) on it. All objects are considered from the viewpoint of
flatness of quantum deformations. The problem of constructing a flatly deformed quantum gauge
theory is discussed as well.

1. Introduction

In this paper we consider some problems which can be gathered together under a general
name ‘braided (quantum, twisted orq-deformed) geometry’. This type of geometry has had
a real gold rush since the creation of the quantum group (QG) theory. This phenomenon
is motivated by a common desire to generalize methods of ordinary geometry for the needs
of mathematical physics since, in accordance with widespread opinion, the future of this
discipline is connected with models which are covariant w.r.t. special Hopf algebras rather
than to ordinary transformation groups.

Nevertheless, it has turned out that not all objects of the ordinary geometry have their
consistentq-analogues. For example, all attempts initiated by Woronowicz [W1, W2] to
develop a bicovariant differential calculus on quantum function space Fun(SLq(n)) with
two properties (flatness of deformation of the differential algebra† and Leibniz rule for the
corresponding differential) have failed.

Moreover, such a differential calculus does not exist. This was shown in [AAM] by
considering the corresponding quasiclassical object, namely the graded Poisson–Lie structure,
which is an extension of the Sklyanin–Drinfeld bracket to the differential algebra (cf also the
last section of [Ar]).

† Let us recall that a deformationA→ Ah̄ whereh̄ is a formal parameter is calledflat if

1. Ah̄/h̄Ah̄ = A
2. Ah̄ and A[[ h̄]] = A⊗ k[[ h̄]]

are isomorphic ask[[ h̄]]-modules (the tensor product is complete in the ¯h-adic topology). Here we consider only
the objects related to the famous Drinfeld–Jimbo QGUq(g). Nevertheless, some of them can be generalized to non-
quasiclassical Hecke symmetries, i.e. solutions of the quantum Yang–Baxter equation (QYBE) whose ‘symmetric’
and ‘skew symmetric’ algebras possess non-classical Poincaré series (cf [G1]).
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The problem is that a consistentq-deformation of the differential calculus which is well
defined on the Lie groupGL(n) (more precisely, on the corresponding matrix algebra Mat(n)),
cf [T], is not compatible with the constraints resulting from the equation detq = 1 where detq
is the quantum determinant. However, someq-deformed differential algebra equipped with a
differential without Leibniz rule exists in theSL(n) case, cf [Ar, FP1]. The authors of [FP1]
recall a claim of L Faddeev that the Leibniz rule is not reasonable in the quantum case.

One of the main purposes of this paper is to suggest a regular way to construct de Rham-
type complexes without any Leibniz rule. The essence of such a complex is close to that of
the Koszul complex (of the first kind) introduced in [G1]. We recall the construction of such
a complex in section 2. In order to introduce a differential we fix a base in aq-deformed
differential algebra and define it only in this base. This saves us from checking the fact that the
differential respects the relations which define the algebra in question. Moreover, we realize
in the classical case a spectral analysis of de Rham complex, i.e. we study the behaviour of the
classical differential on irreducible components of the initial complex and define a quantum
differential with similar properties but in theq-deformed category. This approach is realizable
when the spectral structure of the complex in question is simple enough (it can be also applied
to a non-quasiclassical case).

We apply this approach to a quantum hyperboloid. By construction, its cohomology is
just the same as in the classical case. (In general, the following conjecture seems to be very
plausible: once a quantum de Rham complex is constructed in a proper way it has for a generic
q the same cohomology as its classical counterpart, cf for example [FP2, HS] for an illustration
of this conjecture.) The corresponding construction is described in section 3.

In this connection we also discuss the following problem: what is a proper definition
of the tangent space on the quantum hyperboloid (in other words, what is the phase space
corresponding to the quantum hyperboloid considered as a configuration space)?

We introduce such a tangent spaceT (Hq) (which is treated as anA-module whereA is
the quantum function space in question) and equip it with an action

T (Hq)⊗ A→ A

converting elements of the tangent space into ‘braided vector fields’. Let us remark that our
construction of braided vector fields is realized without (once more!) any Leibniz rule (cf [A]).

We also introduce (in section 4) the notions of a (pseudo)metric and a connection (partially
defined) on the tangent space on the quantum hyperboloid. In all our constructions we impose
only two properties on anyq-deformed object in question:Uq(sl(2))-covariance and flatness
of the deformation.

In section 5 we consider the problem of constructing a quantum gauge theory from this
viewpoint. In spite of numerous attempts to generalize the classical gauge theory from the
above viewpoint, up to now this has not been satisfactory. We are rather sceptical about the
possibility of introducing a consistentq-deformation to the classical gauge theory. We discuss
this in section 5.

Throughout the paper the basic fieldk is R or C and the parameterq ∈ k is assumed to
be generic.

2. De Rham and Koszul complexes: comparative description

First, let us consider some complexes related to the QGUq(sl(n)). The most popular complexes
of such a type are de Rham complexes connected with the first fundamental modules of the QG
Uq(sl(n)) [WZ] and those defined on theq-deformed matrix algebra Mat(n) [T]. Whereas the
former is one-sidedUq(sl(n))-covariant, the latter is bicovariant. (Such complexes exist for
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any Hecke symmetry: see footnote, section 1.)
A de Rham complex related to the first fundamentalUq(SO(n))-module was constructed

in [CSW].
However, all the above complexes are, in a sense, objects of quantum (braided orq−)

linear algebra rather than of quantum geometry. Quantum geometry deals with quantum
varieties different from vector spaces: a typical example isSLq(n) defined by the equation
detq = 1 (by an abuse of the language we speak about a variety although in fact we deal
with the corresponding ‘quantum function space’). As we said above, the quantum differential
calculus well defined on the vector space Mat(n) cannot be restricted to the variety in question
if we want it to be a flat deformation of its classical counterpart and its differential to obey the
Leibniz rule. We refer the reader to [I] where this problem is discussed.

Another interesting class of varieties connected with the QGUq(g) are quantum
homogeneous spaces which are one-sidedUq(g)-modules. The products in the corresponding
algebras are assumed to beUq(g)-covariant:

Z(a · b) = Z(1)a · Z(2)b Z ∈ Uq(g) Z(1) ⊗ Z(2) = 1(Z).
A quantum homogeneous space is usually introduced via a couple of QG in the spirit of a
homogeneous spaceG/H . However, it is desirable for it to have more explicit description by
a system of equations.

An attempt to find such a system for certainq-deformedSL(n)-orbits insl(n)∗ featured
in [DGK]: in fact, a two-parameter family of quantum algebras was constructed and the
problem of which algebra of this family could be considered as aq-analogue of a commutative
algebra was not so evident. In the following we consider a particular case of theseq-deformed
orbits, namely that related toUq(sl(2)) and calledquantum hyperboloid. Being equipped
with a proper involution it becomes Podles’quantum sphere[P1] (more precisely a particular
case of Podles’ quantum sphere which is simply the ‘q-commutative’ case; note that in this
low-dimensional case there is no problem with understanding ‘q-commutativity’).

The first attempt to construct aq-deformed differential calculus on a quantum sphere was
undertaken in [P2]. However, the corresponding differential algebra is not a flat deformation
of its classical counterpart. In section 3 we present another approach to introducing a quantum
de Rham complex with the flatness property.

Let us evoke now another type of complex connected (in particular) with the QYBE,
namely Koszul complexes (we are still working in the framework of quantum linear algebra).
Let V be a vector space overk andI ⊂ V ⊗2 be a subspace ofV ⊗2. Let us set

I (0) = k I (1) = V
I (n) = I ⊗ V ⊗(n−2) ∩ V ⊗ I ⊗ V ⊗(n−3) ∩ . . . ∩ V ⊗(n−2) ⊗ I n > 2

and consider the quadratic algebra

A = T (V )/{I } where {I } is the ideal generated byI

andT (V ) stands for the free tensor algebra of the spaceV .
LetA(n) be its homogeneous component of degreen. Note thatA(0) = k,A(1) = V and

A(n), n > 2 can be treated as the quotient

V ⊗n/In where I n = I ⊗ V ⊗(n−2) + V ⊗ I ⊗ V ⊗(n−3) + · · · + V ⊗(n−2) ⊗ I.
Then the corresponding Koszul complex is defined by

d : A⊗ I (n)→ A⊗ I (n−1) d(a ⊗ x ⊗ y)
= ax ⊗ y where a ∈ A x ⊗ y ∈ V ⊗ V ⊗(n−1) (2.1)
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andax is the product in the algebraA. In fact, this complex decomposes into a series of
subcomplexes

A(m) ⊗ I (n)→ A(m+1) ⊗ I (n−1).

Definition 1. A quadratic algebraA is called Koszul if the cohomology of the complex (2.1)
vanishes in all terms (except of course the trivial termA(0) ⊗ I (0) consisting of constants, i.e.
elements ofk).

Let us suppose now that we have two nontrivial complementary subspacesI+ ⊂ V ⊗2 and
I− ⊂ V ⊗2, i.e. such thatI+ ∩ I− = ∅ andI+ ⊕ I− = V ⊗2 and associate to them two algebras

A+ = T (V )/{I−} and A− = T (V )/{I+}
(they are treated as ‘symmetric’ and ‘skew symmetric’ algebras whereas the elements of the
subspacesI± ⊂ V ⊗2 are treated as ‘symmetric’ and ‘skew symmetric’ tensors). Then we can
define two Koszul complexes

d : I (n)+ ⊗ A− → I (n−1)
+ ⊗ A− and δ : A+ ⊗ I (n)− → A+ ⊗ I (n−1)

−
as described above.

If, moreover, we can identifyA(n)+ with I (n)+ andA(n)− with I (n)− (this means that the spaces
I
(n)
+ andI n− on the one hand andI (n)− andI n+ on the other hand are complementary forn > 3,

cf [DS]) we can consider these two complexes as one (whose terms areA
(m)
+ ⊗ A(n)− ) but

equipped with two differentials mapping in opposite directions.
This is just the case of complexes constructed in [G1] (whereV is a vector space equipped

with a Hecke symmetry, see footnote section 1). As shown in [G1], the algebrasA± are Koszul.
In particular, this implies the classical relation

P+(t) P−(−t) = 1

between the Poincaré series of the ‘symmetric’ and ‘skew symmetric’ algebras.
Let us remark that the above identificationA(n)± ≈ I (n)± was realized in [G1] by means of

projectors

Pn± : V ⊗n→ I
(n)
±

whose kernels are justI n∓. This implies that the spacesI (n)± and I n∓ are complementary.
Moreover, the differentialsd andδ are realized in [G1] directly in terms of these projectors.

We say that an elementx ⊗ y ∈ A(m)+ ⊗ A(n)− is given in a canonical (or base) form
if x ⊗ y ∈ I (m)+ ⊗ I (n)− , i.e. it is realized as a sum of products of ‘symmetrized’ and ‘skew
symmetrized’ elements. In virtue of [G1] any element ofA

(m)
+ ⊗ A(n)− can be represented in a

canonical form.
Let us now compare these complexes with the de Rham complex constructed in [WZ].

By applying the de Rham differential to the productxi1xi2 . . . xim one obtains, by virtue of the
Leibniz rule, a sum whose arbitrary summand is of the form

xi1xi2 . . . xip−1dxip xip+1 . . . xim 16 p 6 m.
(The sign⊗ is systematically omitted.) Here{xi} is a base of the spaceV equipped with a
Yang–Baxter operator of the Hecke type.

The second step of the procedure consists of moving the factor dxip to the right side (for
concreteness). So, the problem arises of finding a moving which would be compatible with the
differential and would lead to a flat deformation of the initial differential algebra. If, moreover,
one wants to restrict the differential to a quantum variety it is necessary to coordinate such a
movement with constrains arising from the system of equations defining the variety in question.
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Nevertheless, such a problem does not appear for the Koszul complex (2.1) since its
differentiald takes only one (namely, extreme) factor of the spaceI (n) to the algebraA. So,
one should not transpose the elements fromV and their differentials.

We can say that the Koszul complex from [G1] and the de Rham one from [WZ] are formed
by the same terms. The difference is that all elements of the Koszul complex are represented
in the canonical form. Moreover, it is easy to see that the differentials of these two complexes
are proportional to each other on each term (and the coefficients are not trivial). This implies
that their cohomologies are isomorphic (recall thatq is generic).

Since the cohomology of the Koszul complex is trivial (apart from the(0, 0) term) we
obtain that it is also true for de Rham complex from [WZ] (a quantum version of the Poincaré
lemma).

Let us remark that this scheme can be extended to other couples of subspacesI± associated
to the QYBE (including non-quasiclassical cases) but the crucial problem is to show that the
associated spacesI (n)+ andI n− (resp.,I (n)− andI n+ ) are complementary (cf [DS]).

3. De Rham-type complex on quantum hyperboloid

Let us pass now to a quantum hyperboloid. Consider the QGUq(sl(2)) generated by the
generatorsX,H, Y subject to the well known relations (cf [CP]). Let us fix a coproduct and
the corresponding antipode and consider the spin 1Uq(sl(2))-moduleV = V q .

In order to define a quantum hyperboloid we should fix a base inV and write down the
system of relations on the generators compatible with action of the QG in question. However,
we want to represent this system in a symbolic way without referring to its specific coordinate
form.

We need only the fact that the fusion ring forUq(sl(2))-modules is exactly the same
as in the classical case (we consider only the finite-dimensionalUq(sl(2))-modules which
are deformations of thesl(2)-modules). Thus, ifVi is the spini Uq(sl(2))-module then the
classical formula

Vi ⊗ Vj = ⊕i+jk=|i−j |Vk
is still valid although the Clebsch–Gordan coefficients (which depend on a base) areq-
deformed.

In particular, we have

V ⊗2 = V0⊕ V1⊕ V2.

We keep the notationV for the initial space andV1 for the component inV ⊗2 isomorphic toV .
Let us fix in the spacesV, V0, V1 andV2 some highest weight (h.w.) elementsv, v0, v1 andv2,
respectively, and impose the relations (which are the most general relations compatible with
action of the QGUq(sl(2)))

v0 = c v1 = h̄v. (3.1)

Herec ∈ k and h̄ ∈ k are some constants. One can now deduce the complete system of
equations by applying to the second relation the decreasing operatorY ∈ Uq(sl(2)).

Let us denoteAch̄ q as the algebra defined by (3.1) and derivative relations.
This algebra possesses the following property: it is multiplicity free. More precisely,

any integer spin module occurs once in its decomposition into a direct sum of irreducible
Uq(sl(2))-modules. Moreover, any element ofAch̄ q can be represented in a unique way as a
sum of homogeneous elements belonging to the componentsVi ⊂ V ⊗i (a proof of this fact can
be deduced, for example, from [GV]). This representation will be calledcanonical or base.
Note that elementv⊗i is a h.w. one of the componentVi .
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We treat a particular case of the algebra in question, namelyAc0q , as aq-analogue of
a commutative algebra and call itquantum hyperboloidif c 6= 0 and quantum coneif
c = 0. Since thesl(2)-modulesl(2)⊗2 is multiplicity free we can introduceq-analogues
I± of symmetric an skew symmetric subspaces ofsl(2)⊗2 by setting similarly to the classical
case

I+ = V0⊕ V2 and I− = V1.

Let us emphasize that the corresponding algebrasA± = T (sl(2))/{I∓} are flat
deformations of their classical counterparts.

We will need also aq-deformed (braided) Lie bracket. It can be defined as a non-trivial
map

[ , ]q : V ⊗2→ V

(V = sl(2) as linear spaces) being aUq(sl(2))-morphism. By this request the bracket is
defined in a unique way up to a factor.

Remark 1. Let us remark that for the Lie algebrasg = sl(n), n > 3 theg-moduleg⊗2 is not
multiplicity free any more: it possesses two components isomorphic tog itself: one belongs
to the symmetric part ofg⊗2 and the other one to the skew symmetric part. This is the reason
why it is not so evident what areq-analogues of the symmetric and skew symmetric algebras
of the spaceg. However, there exists a subspaceI− ⊂ g⊗2

q wheregq = sl(n) as vector spaces
but equipped with aUq(sl(n))-module structure such that the quadratic algebraT (gq)/{I−}
is a flat deformation of the symmetric algebra ofg (cf [D]). A more explicit description ofI−
can be given by means of the so-called reflection equation (RE)

SL1SL1− L1SL1S = 0 (3.2)

where S is a solution of the QYBE (here of the Hecke type),L1 = L ⊗ id andL is a matrix
with matrix elements(lji ). The quadratic algebra defined by the system (3.2) is usually called
RE algebra.

Let us remark that the RE algebra is covariant w.r.t.Uq(sl(n)) (cf [IP]) and it is a flat
deformation of its classical counterpartSym(W) whereW = span(lji ) (cf [L]). It is not
difficult to see that the spaceW is a sum of two irreducibleUq(g)-modules: one-dimensional
one with a generatorl = trq L wheretrq is theq-trace andn2− 1-dimensional one which can
be identified withgq above. By killing the componentl (i.e. by passing to the quotient of the
RE algebra over the ideal{l}) we get exactly algebra mentioned above,T (gq)/{I−}. In other
words, the spaceI− is defined by the relation (3.2) but with one component less.

Moreover, by means of the RE algebra one can get an algebra looking like the enveloping
algebra ofq-deformed Lie algebrasl(n) introduced in [LS]. Before killing the componentl let
us realize a shiftlji → l

j

i + h̄δji . Then instead of a graded quadratic algebra we get a filtered
algebra, defined by quadratic-linear relations. Now by killingl we get a quadratic-linear
algebra withn2 − 1 generators. This is just another realization of the enveloping algebra
from [LS] (if in the latter algebra we replace the Casimir element by a constant, cf [LS]) and a
flat two-parameter deformation ofSym(g)whose existence was stated in [D]. (However, to get
a reasonable quasiclassical limit we should replace the parameterh̄ in this quadratic-linear
algebra bȳh/(q − 1).)

If g is a simple Lie algebra different fromsl(n) its tensor square is multiplicity free. This
allows one to define aq-deformed Lie bracket requiring it to be a non-trivial morphism in the
category ofUq(g)-modules (this defines the bracket uniquely up to a factor) and to introduce
the enveloping algebra of the corresponding ‘braided Lie algebra’gq . Deformed analogues
of the symmetric and skew symmetric algebras of the spaceg are also well defined. However,
these algebras are not flat deformations of their classical counterparts (cf [G2]).
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Remark 2. Let us emphasize that the classical counterpartAc0 1 of the algebraAc0q contains
only polynomials restricted to the hyperboloid (or the cone). This is the reason why its
properties and those of the function algebra on the sphere are similar: a passage from one
algebra to the other one can be realized by a change of base. For example, this passage does
not change the cohomology of the de Rham complex (see below).

Let us set�0 = Ac0q . Our next step is to define the spaces of first- and second-order
differential forms over this algebra. First, consider the tensor products

∧1 = Ac0q ⊗ V ′ and ∧2 = Ac0q ⊗ V ′′1 .
Their second factors are treated as pure differentials (say the elementx ⊗ y ∈ ∧1 is treated
asx dy and inx ⊗ y ∈ ∧2 the factory ∈ V ′′1 is a sum of products of two pure first-order
differentials). The mark′ stands for a pure first-order differential term and that′′ stands for a
pure second-order differential term. Thus, the spaceV ′ (resp.V ′′1 ) is isomorphic to the space
V1 itself; the isomorphism is defined by

dxi → xi(resp. dxi ⊗ dxj → xi ⊗ xj ).
Note that we treat the vector spaces∧i as leftAc0q-modules. We do not endow their sum

⊕∧i with any algebraic structure. So, we do not need any transposition rule for the elements
of Ac0q and their differentials.

Let us introduce now the first- and second-order differential forms on the quantum
hyperboloid by

�1 = ∧1/{(V ⊗ V ′)0} �2 = ∧2/{(V ⊗ V ′′1 )1 + (v0 − c)⊗ V ′′1 }.
Here the terms in the denominators are not ideals but only leftAc0q-submodules of∧1 and∧2,
respectively. The notation(V ⊗ V ′)i means that in the productV ⊗ V ′ we take the spini
component (similarly for(V⊗V ′′1 )i). And(v0−c)⊗V ′′1 stands for the second-order differential
forms containingv0 − c as a factor.

To make this construction more explicit let us represent it in a base form (by restricting
ourselves to the classical case since it does not matter what case, classical or quantum we
deal with). Letu, v,w be the usual base in Fun(sl(2)∗) = Sym(sl(2)). Then the above
denominators are generated respectively by

2u dw + 2w du + v dv

and

2ue2 + ve1 ue3− we1 2we2 + ve3 (2uw + 2wu + vv − c)ei i = 1, 2, 3

with e1 = du dv − dv du e2 = du dw − dw du e3 = dv dw − dw dv

(we suppose here thatv0 = 2uw + 2wu + vv).
We have defined the spaces�i, i = 1, 2 as some quotients. Now, we want to define the

differentials in some bases of these spaces similarly to the Koszul complexes discussed above.
To define such bases we realize a spectral analysis of the spaces�i , i.e. decompose these
spaces into a direct sum of irreduciblesl(2)-modules. First, describe the components in the
products

V ⊗ V ′ Vi ⊗ V ′ Vi ⊂ Ac0 1 i = 2, 3, . . .

which are surviving in the quotient space�1. It is evident that in the productV ⊗ V ′ only the
components(V ⊗V ′)1 and(V ⊗V ′)2 survive since by construction the component(V ⊗V ′)0
is equal to zero in the quotient.

By a similar reason in the productV2 ⊗ V ′ the components(V2 ⊗ V ′)2 and(V2 ⊗ V ′)3
survive and that(V2 ⊗ V ′)1 is equal to zero modulo the terms ofk ⊗ V ′ = V ′. This can be
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explained as follows. The elements ofµ1,2(V ⊗ (V ⊗ V ′)0) are trivial in�1 by construction.
Hereµ stands for the product inAc0q , the indices, 1, 2 mean, as usual, that the operatorµ is
applied to the first two factors. By reducing any element of the productV ⊗V to the canonical
form we get a sum of an element fromV2 ⊂ V ⊗2 and another one fromk. This completes the
proof.

Similarly, in the productVi ⊗V ′ the component(Vi ⊗V ′)i−1 is equal to zero modulo the
terms belonging toVj ⊗ V ′, j < i. Thus, we have shown the following.

Proposition 1. The base in theAc0q-module�1 is formed by

(1)V ′ (2)(V ⊗ V ′)1,2 (3)(V2⊗ V ′)2,3 (4)(V3⊗ V ′)3,4 etc.

In a similar way one can perform a spectral analysis of theAc0q-module�2 and describe
its base.

Proposition 2. The base in theAc0q-module�2 is formed by

(1)V ′′1 (2)(V ⊗ V ′′1 )0,2 (3)(V2⊗ V ′′1 )3 (4)(V3⊗ V ′′1 )4 etc.

An evident difference between the modules�1 and�2 consists in the following. The
module�2 is defined as a quotient of∧2 over the sum of two submodules. Therefore, two
components in the productsVi ⊗ V ′′1 , i > 2 disappear and only one survives. The component
V1 ⊗ V ′ is exceptional because the relationv0 = c does not lead to any constraint for it. Let
us consider now the de Rham complex in the classical case

0−→ �0 d0−→ �1 d1−→ �2 −→ 0. (3.3)

Since the differential commutes with thesl(2) action it takes any irreduciblesl(2)-module to
either an isomorphicsl(2)-module or 0. Using propositions 1 and 2 it is not difficult to describe
the irreduciblesl(2)-modules of�i, i = 0, 1, 2 belonging to Kerd and those belonging to
Im d.

Proposition 3. 1. In�0 the only trivial module, i.e. that consisting of the elements ofk belongs
to Ker d0.

2.Kerd1 = V ′ ⊕ (V ⊗ V ′)2⊕ (V2⊗ V ′)3⊕ (V3⊗ V ′)4⊕ . . .
and therefore the modules

(V ⊗ V ′)1 (V2⊗ V ′)2 (V3⊗ V ′)3 . . .
go to isomorphic modules in�2.

Corollary 1. The cohomology of the complex (3.3) is the following:

dimH 0 = 1 dimH 1 = 0 dimH 2 = 1.

H 0 is generated by 1 andH 2 is generated by(V ⊗ V ′′1 )0.

Thus, it is just the cohomology of the sphere (see above, remark 2).
Let us now extend the de Rham complex (3.3) to the quantum case. The terms of the

quantum complex have just the same irreducible components as their classical counterparts (but
these components becomeUq(sl(2))-modules). Now we should define differentials. Define
them on each term by requiring them to beUq(sl(2))-morphisms and to be flat deformations
of the classical differentials (by this demand the differentials are defined on eachUq(sl(2))-
module in a unique way up to a factor). Finally, we have by construction exactly the same
cohomology as in the classical case.

Comparing our construction with that from [P2] we repeat that the latter is not any flat
deformation of its classical counterpart while our deformation is flat by construction. On the
other hand, we have lost the structure of an algebra in theAc0q-module� = ⊕�i and the
Leibniz rule for the differentials.
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4. Quantum tangent space and related structures

In this section we introduce the tangent space on quantum hyperboloid and discuss some
derived structures (metric, connection). We also discuss a way to realize theq-deformed
tangent space by means of ‘braided vector fields’. Hopefully, this approach is valid for other
quantum varieties like quantum orbits considered in [DGK]. As in the previous section we
avoid using any specific base form.

First, we consider a sphereS2 given byx2 + y2 + z2 = c. Let Fun(S2) be the space of the
polynomials restricted to the sphere and Vect(S2) be the space of left vector fields. The latter
space is generated as a left Fun(S2)-module by three infinitesimal rotations

X = y∂z − z∂y Y = z∂x − x∂z Z = x∂y − y∂x.
It is easy to check that the vector fieldsX, Y,Z satisfy the following relation:

x X + y Y + z Z = 0 (4.1)

(x, y, z are treated here as operators via the product operator in the algebra Fun(S2)). So, as
a Fun(S2)-module Vect(S2) can be realized as the quotientM/N where

M = {a X + b Y + c Z, a, b, c ∈ Fun(S2)}
N = {f (x X + y Y + z Z), f ∈ Fun(S2)}.

In what follows we call this Fun(S2)-moduletangent spaceand denote itT (S2). In fact it
is simply the Vect(S2) space but we want to emphasize by this notation that we ignore the
operator meaning of this space. As usual, the tangent space is introduced in local terms as a
vector bundle. However, in the quantum case such a local description is not possible.

In a similar way there can be introduced the tangent spaceT (H) on a hyperboloidH .
Namely, it can be realized as the quotient of a freeAc0 1-moduleM over its submodule

N = {f (2uW + 2wU + v V )}.
This is also motivated by the operator meaning of the generators: the generatorsU,V,W are
represented in the algebra Fun(H) = Ac0 1 by infinitesimal hyperbolic rotations.

Note that the symmetric algebra of the tangent spaceT (S2) can be treated as the function
algebra on the underlying four-dimensional algebraic variety embedded in the six-dimensional
space

(span(x, y, z,X, Y, Z))∗

this variety is defined by the equation of the sphere and that (4.1) (ifk = R it is true forc > 0).
A similar description is also valid for the symmetric algebra ofT (H).

Unfortunately, there does not exist any quantum analogue of this algebra being its flat
deformation (see below). Nevertheless, a reasonableq-deformation of tangent space equipped
with an appropriated module structure exists. The aim of this section is to describe this
deformation, i.e., to introduce the tangent space on the quantum hyperboloid as anAc0q-module
and to realize its elements as operators looking like vector fields on the classical object.

In order to do it we represent the defining relation of the tangent spaceT (H) in a symbolic
way:

(V ⊗ V ′)0 = 0 (4.2)

(hereafter the mark′ designs the space span(U, V,W)). We treat the tangent space on the
hyperboloid as a leftAc0 1-module (as a rightAc0 1-module the tangent space can be given by
(V ′ ⊗ V )0 = 0).

It is evident that if we want to define the tangent space on the quantum hyperboloid as a
flat deformation of its classical counterpart we should use the same formula (4.2) but in the
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category ofUq(sl(2))-modules. Let us be a precise. First, we introduce the leftAc0q-module
∧1 as in the previous section but with another signification of the spaceV ′. This means that the
generators du, dv, dw are replaced byU,V,W , while theUq(sl(2))-module structure ofV ′

is unchanged. Second, we define thetangent spaceon the quantum hyperboloid as its quotient
like�1 above (fortunately, both the tangent and cotangent spaces asAc0q-modules are defined
by the same equation (4.2)). Let us denote the quotient object byT (Hq) reserving the notation
Hq for the quantum hyperboloid.

Proposition 4. TheAc0q-moduleT (Hq) is a flat deformation of its classical counterpart.

Proof follows immediately from the explicit construction of the base of this quotient given
in the previous section.

Let us now assign an operator meaning to the elements of the spaceT (Hq).

Proposition 5. There exists a map

β : T (Hq)⊗Ac0q → Ac0q (4.3)

such that the diagram

Ac0q ⊗ T (Hq)⊗Ac0q −→ T (Hq)⊗Ac0q
↓ ↓

Ac0q ⊗Ac0q −→ Ac0q
is associative. Here the elements ofAc0q act onAc0q (the low arrow) by the usual product.
The vertical arrows are defined by means ofβ and the top one makes use of theAc0q-module
structure ofT (Hq). (Thus, the mapβ realizes an action of the spaceT (Hq) on the algebra
Ac0q .)

This proposition allows us to realize the tangent space as an operator algebra where the
elements of the algebraAc0q act via the product operator. We call the elements of the space
T (Hq) (left) braided vector fieldsif the operatorsβ(V ′) satisfy the relations

(β ⊗ β)(V ′ ⊗ V ′)1− σ β [ , ]q(V
′ ⊗ V ′)1 = 0

where [, ]q is theq-deformed Lie bracket introduced in section 3 andσ ∈ k is a non-trivial
factor. This means thatβ realizes a representation (in the sense of [LS]) of the braided Lie
algebra defined by the bracketν[ , ]q with a proper factorν.

Proposition 6. There exists a mapβ from the previous proposition such that the elements of
T (Hq) being represented viaβ becomes braided vector fields.

We refer the reader to [A] for proofs of these statements (the main idea of the construction
has been suggested in [DG2]). Here, we only want to say that the problem is to find good
candidates for the role ofq-analogues of the infinitesimal hyperbolic rotationsU,V,W . They
arise from the adjoint action of theq-Lie algebrasl(2)q onto itself (note that the operators
X,H, Y coming from the QGUq(sl(2)) do not satisfy the relation (4.2)).

Let us remark that similar statements are valid for the tangent space treated as a right
Ac0q-module.

Thus, we have an embedding

sl(2)q ↪→ T (Hq) (4.4)

where the tangent space is realized as braided vector fields space. This embedding is a
deformation of its classical counterpart which is the simplest example of a so-called anchor
(recall that an anchor consists of an varietyM, a Lie algebrag and an embedding ofg into the
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vector field space onM). This is why we call the embedding (4.4)quantum anchorin spite of
the fact that the whole of the spaceT (Hq) is not equipped with anyq-deformed Lie bracket.
We consider also the data(T (Hq),Ac0q) as a partialq-analogue of Lie–Rinehart algebras [R]
(‘partial’ means here that the spaceT (Hq) is not equipped with any ‘q-Lie algebra’ structure
properly coordinated with the product operator in the algebraAc0q).

After having represented the spaceT (Hq) by braided vector fields it is natural to introduce
the space of braided differential operators as that generated by the braided vector fields and the
elements ofAc0q treated as zero-order operators (see above). In the classical case this space is
spanned by the subspaces

Ac0 1⊗ V ′⊗n.
The fact that this algebra is closed w.r.t. the operator product is assured by the Leibniz rule:
by means of this rule it is possible to represent a product of two elements of this form as a
linear combination of such elements.

Unfortunately, in the quantum case any form of the Leibniz rule does not exist (this fact can
be checked by direct calculations). Roughly speaking, this means that there does not exist any
reasonable way to transpose the elements of the algebraAc0q and those of the spaceV ′. This
is also the reason why there does not exist any ‘q-symmetric algebra’ of the quantum tangent
spaceT (Hq) being a flat deformation of its classical counterpart (see above). Without going
into detail we say only that the Yang–Baxter operator (arising from the universalR-matrix)
being at first glance a good candidate for the role of such a transposition leads to a non-flat
deformation of the classical symmetric algebra. (See also below, remark 3).

Let us pass now to the problem of constructing aq-deformed metric on the quantum
tangent space. To distinguish the quantum tangent spaces equipped with the left and right
Ac0q-module structures we will use for the first (second) one the notationT (Hq)l (T (Hq)r ).

Definition 2. We say that an operator

〈,〉 : T (Hq)l ⊗k T (Hq)r → Ac0q
is quantum (pseudo-)metric if it commutes with left and right multiplication by the elements
fromAc0q in the following sense:

〈fP,Q〉 = f 〈P,Q〉 〈P,Qf 〉 = 〈P,Q〉f ∀ f ∈ Ac0q P ∈ T (Hq)l
Q ∈ T (Hq)r (4.5)

(in particular, P, Q ∈ V ′) and if it is compatible with the action ofUq(sl(2)) . The latter
property means, as usual, that

Z〈,〉 = 〈,〉1(Z) ∀Z ∈ Uq(sl(2))
(this relation is treated as operator one inT (Hq)l⊗k T (Hq)r ). A metric is called symmetric if

〈,〉(V ′ ⊗ V ′)1 = 0. (4.6)

Proposition 7. There exists the unique (up to a factor) symmetric quantum metric on the
quantum hyperboloid.

A proof of this fact is given in [A]. We do not reproduce it here. Let us indicate only the
crucial idea of the proof. First, it is necessary to describe all pairings

〈,〉 : V ′ ⊗ V ′ → Ac0q
compatible with theUq(sl(2)) action. In order to do it we should decomposeV ′ ⊗ V ′ into
a sum of the irreducibleUq(sl(2))-modules. This gives rise to the following two-parameter
family of Uq(sl(2))-covariant pairing

〈,〉(V ′ ⊗ V ′)2 = aV2 〈, 〉(V ′ ⊗ V ′)0 = b
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completed by relations (4.6) (as usual, the relations are given in a symbolic way). On the
second step we should impose the condition

〈,〉23(V ⊗ V ′)0⊗ V ′ = 0

which results in a relation between the parametersa andb. It remains to verify that this relation
is compatible with the following one

〈,〉12V ′ ⊗ (V ′ ⊗ V )0 = 0

and then to extend the metric to the wholeT (Hq)l ⊗k T (Hq)r by using the relations (4.5).
Let us emphasize that although we call the above pairing metric (‘pseudo’ means only

that its classical analogue is not positive definite) it is well defined on the product of a left and
a rightAc0q-modules. If we want now to define a similar pairing between two left (or right)
Ac0q-modules we should proceed in the following way. Let us identify the left tangent space
T (Hq)l and the right oneT (Hq)r , i.e. define a map

α : T (Hq)l → T (Hq)r

being aUq(sl(2))-isomorphism.
Then on setting by definition

〈X, Y 〉 = 〈X,α(Y )〉 X, Y ∈ T (Hq)l
we get a pairing between two leftUq(sl(2))-modules. At first glance the mapα can be defined
by means of the YB operator arising from the QGUq(sl(2)). However, this operator which
establishes a bijectivity between freeAc0q-modulesAc0q⊗V ′ andV ′⊗Ac0q is not any bijectivity
on their factorsT (Hq)l andT (Hq)r since it does not take the denominator corresponding to
T (Hq)l to that corresponding toT (Hq)r . We suggest another way to define such aUq(sl(2))-
isomorphismα.

Let us represent the both objects as sums ofUq(sl(2))-modules in the spirit of proposition 1.
Then theUq(sl(2))-morphisms

α : (V ⊗ V ′)1→ (V ′ ⊗ V )1 (V ⊗ V ′)2→ (V ′ ⊗ V )2
(V2⊗ V ′)2→ (V ′ ⊗ V2)2 . . .

are defined uniquely up to a factor on each couple of components (for the generating spaceV ′

we putα = id ).
However, we can reduce this freedom by identifying the elements from

(V ⊗ V ′)2 and (V ′ ⊗ V )2 (Vi ⊗ V ′)i+1 and (V ′ ⊗ Vi)i+1 i = 2, 3, . . .

which coincide if we replaceV ′ by V . As for the components

(V ⊗ V ′)1 and (V ′ ⊗ V )1 (Vi ⊗ V ′)i and (V ′ ⊗ Vi)i i = 2, 3, . . .

their elements are identified if this operation leads to opposite images. It is not difficult to
see that in the classical case this identification and that defined by the flip coincide (it is the
motivation of our method).

Remark 3. Let us remark that for algebras looking like thatAc0q but connected to an involutory
YB operator an identification of their left and right modules can be realized by means of this
operator. Non-involutivity of the YB operator arising from the QGUq(sl(2)) which leads to
the above defect prevents us also from a reasonable definition of a tensor productM1⊗Ac0q M2

of two (say) leftAc0q-modules. The problem is that there do not exist any reasonable way to
transpose the factorf ∈ Ac0q in the product

m1⊗ f m2 m1 ∈ M1 m2 ∈ M2

on the left side so that the tensor product⊗Ac0q is still associative and the moduleM1⊗Ac0q M2

is a flat deformation of its classical counterpart assumingM1 andM2 to be flat deformations
of their classical counterparts. For an involutory YB operator this problem does not appear.
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Let us now discuss the problem of defining a (torsion-free)Uq(sl(2))-covariant connection
on the tangent spaceT (Hq). Such a partially defined connection was introduced in [A].
‘Partially defined’ means here that the operators of covariant derivatives are defined only on a
subspace ofT (Hq), namely onV ′. More precisely, there exists aUq(sl(2))-morphism

∇ : T (Hq)l ⊗ V ′ → T (Hq)l

X ⊗ Y 7→ ∇XY
such that

∇fXY = f∇XY X ∈ T (Hq) Y ∈ V ′ f ∈ Ac0q
and

aij∇XiXj = aij [Xi,Xj ]q Xi,Xj ∈ V ′ (4.7)

whereaijXi ⊗Xj ∈ V1 and [, ]q is the above-mentionedq-deformed Lie bracket.
We would be able to extend this (partially defined) connection to the wholeT (Hq)⊗T (Hq)

if we could extend the bracket [, ]q to the wholeT (Hq)and to understand what is the enveloping
algebra of this extendedq-deformed Lie algebra (we need this in order to write suitable
expressions in the lhs of (4.7)). Unfortunately, we do not know any way to do this.

Let us remark that all naive extensions of the bracket [, ]q are not compatible with the
equation (4.2).

There exist a number of papers introducing the notions of quantum metric and connection
in another way (cf [HM] and the references therein). Our approach is motivated by our desire
to control the flatness of deformation of classical objects (see also the next section).

Completing this section, we want to mention a very important property of theAc0q-module
T (Hq) (if c 6= 0): it is projective in the category ofUq(sl(2))-modules. This means that it is
a direct component in a freeAc0q-module and there exists a projector of the latter one onto the
module in question being aUq(sl(2))-morphism (cf [A]).

Some other projective modules over quantum sphere have been considered in [HM]. We
plan to devote a subsequent paper to quantum projective modules in a more general context.

5. On quantum gauge theory

There exist two approaches toq-deformed gauge theory. One of them deals with the usual
manifolds (varieties) and deforms only a structure of fibres. The second approach deals with
quantum varieties looking like the quantum hyperboloid above.

First, let us evoke the paper [S] as the most advanced contribution to the first kind of
approach. The gauge potentialAµ introduced in this paper is a vector field

Aµ(x) = Aiµ(x)Xi
with values in the quantum Lie algebragq . Heregq is theq-deformed Lie algebrag = sl(n) (or
su(n)) as defined in [LS] (note that the casen = 2 was previously considered in [DG1]). Thus,
the factorsXi are elements of this quantum Lie algebra and thoseAiµ(x) are usual functions
depending on a ‘space-time point’x (or more generally, on a point of a usual variety).

In virtue of [LS] the quantum Lie algebragq is realized as a subspace inUq(g) so that it
is stable w.r.t. the adjoint action of the QGUq(g) on itself and

1(Xi) = Xi ⊗ C + uji ⊗Xj
where1 is the coproduct inUq(g),C is a central (Casimir) element ofUq(g) anduji are some
elements ofUq(g).
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The crucial point of any gauge theory is a transformation law ofAµ under an action of a
gauge group or a gauge Hopf algebra. In [S] it is supposed to be

Aµ 7→ A′µ(x) = h(x)(1)Aµs(h(x)(2))− α−1s(C)−1∂µ(h(x)(1))s(h(x)(2)) (5.1)

whereα is a coupling constant,s is the antipode,h(x) is a function ofx with values in the QG
Uq(g) and

h(x)(1) ⊗ h(x)(2) = 1h(x).
However, a problem arises to ‘distribute thex-dependence of the coproduct1(h(x)) between
two factors’ in the second term of (5.1) so that it becomes an element of the spacegq for a
fixedx (let us emphasize that it is not a trivial task). Such a distribution has been found in [S].

Nevertheless, it was indicated in [S] that if we consider a (say) bosonic fieldψ(x)

then its defining relations cannot be introduced in a way compatible with quantum gauge
transformations. We will try to explain this as follows. Let us consider the ‘quantum covariant
derivative’ of the fieldψ

Dµψ = ∂µψ + βρ(Aµ)ψ

whereρ is the representation of the QGUq(g) corresponding toψ andβ = αρ(s(C)) is a
constant. In the rhs of this formula the operator∂µ commutes with theUq(g) action but the
operatorρ(Aµ) does not. This implies that such a covariant derivative cannot preserve the
relations valid forψ . (We would have a similar effect in a supertheory if we allowed the
summandAµ to be an odd operator.)

Let us discuss now the approach of the second kind, i.e. we suppose that the base variety is
quantum as well. An axiomatic way to suggest such an approach was considered in numerous
papers. We do not give here an exhausting list of these papers and only refer the reader to the
papers [S] and [BM] where such a list is given.

We will point out the common features of all of them. First, a quantum variety in question
is given in a way which does not allow us to control the flatness of deformation (as a rule
this problem is not even evoked). Another crucial defect of this approach is that a connection
is introduced habitually via a Leibniz rule similarly to the classical case but as we have seen
this implied the non-flatness of the deformation. Another reason of the non-flatness of the
deformation is that in the formulae analogical to (5.1) the second summand does not belong
usually to the fibre.

This explains our scepticism about a possibility of constructing a quantum gauge theory
related to the QGUq(g) which would be a flat deformation of its classical counterpart.

Anyway, it would be desirable to precede any attempt to construct such a theory by a
quasiclassical study in the spirit of [Ar] confirming or refuting the possibility of doing it.
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