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Abstract. A new approach is suggested to quantum differential calculus on certain quantum
varieties. It consists in replacing quantum de Rham complexes with differentials satisfying Leibniz
rule by those which are in a sense close to Koszul complexes from Gurevich (&9&igrad

Math. J.2 801-28). We also introduce the tangent space on a quantum hyperboloid equipped
with an action on the quantum function space and define the notions of quantum (pseudo)metric
and quantum connection (partially defined) on it. All objects are considered from the viewpoint of
flatness of quantum deformations. The problem of constructing a flatly deformed quantum gauge
theory is discussed as well.

1. Introduction

In this paper we consider some problems which can be gathered together under a general
name ‘braided (quantum, twisted g@rdeformed) geometry’. This type of geometry has had

a real gold rush since the creation of the quantum group (QG) theory. This phenomenon
is motivated by a common desire to generalize methods of ordinary geometry for the needs
of mathematical physics since, in accordance with widespread opinion, the future of this
discipline is connected with models which are covariant w.r.t. special Hopf algebras rather
than to ordinary transformation groups.

Nevertheless, it has turned out that not all objects of the ordinary geometry have their
consistentg-analogues. For example, all attempts initiated by Woronowicz [W1, W2] to
develop a bicovariant differential calculus on quantum function space(fHuyin)) with
two properties (flathess of deformation of the differential algebrat and Leibniz rule for the
corresponding differential) have failed.

Moreover, such a differential calculus does not exist. This was shown in [AAM] by
considering the corresponding quasiclassical object, namely the graded Poisson—Lie structure,
which is an extension of the Sklyanin—Drinfeld bracket to the differential algebra (cf also the
last section of [Ar]).

T Let us recall that a deformatiot — Ay whereh is a formal parameter is calldtht if
1 Ap/hAr=A
2. Ap and A[[R]] = A K[[R]]

are isomorphic as[[%]]-modules (the tensor product is complete in thadic topology). Here we consider only

the objects related to the famous Drinfeld—Jimbo Q@Gg). Nevertheless, some of them can be generalized to non-
quasiclassical Hecke symmetries, i.e. solutions of the quantum Yang—Baxter equation (QYBE) whose ‘symmetric’
and ‘skew symmetric’ algebras possess non-classical Péiseaies (cf [G1]).
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The problem is that a consistejtdeformation of the differential calculus which is well
defined on the Lie grou@ L (n) (more precisely, on the corresponding matrix algebra(Mat
cf [T], is not compatible with the constraints resulting from the equatiop et where det
is the quantum determinant. However, sogrdeformed differential algebra equipped with a
differential without Leibniz rule exists in th&€L (n) case, cf [Ar, FP1]. The authors of [FP1]
recall a claim of L Faddeev that the Leibniz rule is not reasonable in the quantum case.

One of the main purposes of this paper is to suggest a regular way to construct de Rham-
type complexes without any Leibniz rule. The essence of such a complex is close to that of
the Koszul complex (of the first kind) introduced in [G1]. We recall the construction of such
a complex in section 2. In order to introduce a differential we fix a basegirdaformed
differential algebra and define it only in this base. This saves us from checking the fact that the
differential respects the relations which define the algebra in question. Moreover, we realize
in the classical case a spectral analysis of de Rham complex, i.e. we study the behaviour of the
classical differential on irreducible components of the initial complex and define a quantum
differential with similar properties but in thedeformed category. This approach is realizable
when the spectral structure of the complex in question is simple enough (it can be also applied
to a non-quasiclassical case).

We apply this approach to a quantum hyperboloid. By construction, its cohomology is
just the same as in the classical case. (In general, the following conjecture seems to be very
plausible: once a quantum de Rham complex is constructed in a proper way it has for a generic
¢ the same cohomology as its classical counterpart, cf for example [FP2, HS] for an illustration
of this conjecture.) The corresponding construction is described in section 3.

In this connection we also discuss the following problem: what is a proper definition
of the tangent space on the quantum hyperboloid (in other words, what is the phase space
corresponding to the quantum hyperboloid considered as a configuration space)?

We introduce such a tangent sp&teH,) (which is treated as an-module whereA is
the quantum function space in question) and equip it with an action

T(H)®A— A

converting elements of the tangent space into ‘braided vector fields’. Let us remark that our
construction of braided vector fields is realized without (once more!) any Leibniz rule (cf [A]).

We also introduce (in section 4) the notions of a (pseudo)metric and a connection (partially
defined) on the tangent space on the quantum hyperboloid. In all our constructions we impose
only two properties on any-deformed object in questiort/, (s/(2))-covariance and flatness
of the deformation.

In section 5 we consider the problem of constructing a quantum gauge theory from this
viewpoint. In spite of numerous attempts to generalize the classical gauge theory from the
above viewpoint, up to now this has not been satisfactory. We are rather sceptical about the
possibility of introducing a consistegtdeformation to the classical gauge theory. We discuss
this in section 5.

Throughout the paper the basic fidlds R or C and the parameter € k is assumed to
be generic.

2. De Rham and Koszul complexes: comparative description

First, letus consider some complexes related to théQd@ (»)). The most popular complexes

of such atype are de Rham complexes connected with the first fundamental modules of the QG
U, (sl(n)) [WZ] and those defined on thedeformed matrix algebra Mét) [T]. Whereas the
former is one-sided/, (s/(n))-covariant, the latter is bicovariant. (Such complexes exist for
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any Hecke symmetry: see footnote, section 1.)

A de Rham complex related to the first fundameiaS O (n))-module was constructed
in [CSW].

However, all the above complexes are, in a sense, objects of quantum (braigledl or
linear algebra rather than of quantum geometry. Quantum geometry deals with quantum
varieties different from vector spaces: a typical examplgfig(n) defined by the equation
det, = 1 (by an abuse of the language we speak about a variety although in fact we deal
with the corresponding ‘quantum function space’). As we said above, the quantum differential
calculus well defined on the vector space aicannot be restricted to the variety in question
if we want it to be a flat deformation of its classical counterpart and its differential to obey the
Leibniz rule. We refer the reader to [I] where this problem is discussed.

Another interesting class of varieties connected with the Qfg) are quantum
homogeneous spaces which are one-sidg@)-modules. The products in the corresponding
algebras are assumed to lig(g)-covariant:

Z(Cl . b) = Z(l)a . Z(z)b Z e Uq(g) Z(]_) ® Z(z) = A(Z)

A guantum homogeneous space is usually introduced via a couple of QG in the spirit of a
homogeneous spacg/ H. However, it is desirable for it to have more explicit description by
a system of equations.

An attempt to find such a system for certgideformedS L (n)-orbits insi(n)* featured
in [DGK]: in fact, a two-parameter family of quantum algebras was constructed and the
problem of which algebra of this family could be considered @saaalogue of a commutative
algebra was not so evident. In the following we consider a particular case oftfiefermed
orbits, namely that related tt, (s/(2)) and calledquantum hyperboloid Being equipped
with a proper involution it becomes Podlegiantum spherfP1] (more precisely a particular
case of Podles’ quantum sphere which is simply thedmmutative’ case; note that in this
low-dimensional case there is no problem with understandirgpmmutativity’).

The first attempt to constructiadeformed differential calculus on a quantum sphere was
undertaken in [P2]. However, the corresponding differential algebra is not a flat deformation
of its classical counterpart. In section 3 we present another approach to introducing a quantum
de Rham complex with the flatness property.

Let us evoke now another type of complex connected (in particular) with the QYBE,
namely Koszul complexes (we are still working in the framework of quantum linear algebra).
Let V be a vector space overand! C V%2 be a subspace of®2. Let us set

19 =k P=v

W= JVer2AyIVverdn, Ayen-2g; n>?2
and consider the quadratic algebra

A=TV)/{I} where {7} is the ideal generated by

andT (V) stands for the free tensor algebra of the space
Let A™ be its homogeneous component of degredote thatdA©® =k, A®D = V and
A™ n > 2 can be treated as the quotient

yen/n where I"=1Q V" 2+y I Ve +...+yen-2 g
Then the corresponding Koszul complex is defined by

d:AQI™ > A® "D da®xQy)
=ax®y where acA x®yeV®VerD (2.1)
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andax is the product in the algebra. In fact, this complex decomposes into a series of
subcomplexes

A(Wl) ® I(") — A(m+l) ® I(nfl).

Definition 1. A quadratic algebraA is called Koszul if the cohomology of the complex (2.1)
vanishes in all terms (except of course the trivial tetf? ® 7© consisting of constants, i.e.
elements of).

Let us suppose now that we have two nontrivial complementary subspace¥ ®? and
I_ C V%2 ie.suchthaf, N I_ =@ andl, @ I_ = V®? and associate to them two algebras

Ay = T(V)/{I_} and  A_=T(V)/{L}

(they are treated as ‘symmetric’ and ‘skew symmetric’ algebras whereas the elements of the
subspaces. C V®? are treated as ‘symmetric’ and ‘skew symmetric’ tensors). Then we can
define two Koszul complexes

d:I"®A. > 1"V QA and §1A®I™ > A, @1

as described above.
If, moreover, we can identifd " with 7" andA " with 1 (this means that the spaces

™ andI” on the one hand ant” andI” on the other hand are complementaryop 3,

cf [DS]) we can consider these two complexes as one (whose termsVAre A(,’”) but
equipped with two differentials mapping in opposite directions.

This is just the case of complexes constructed in [G1] (wleiea vector space equipped
with a Hecke symmetry, see footnote section 1). As shownin [G1], the algabrase Koszul.
In particular, this implies the classical relation

P.(t) P_(—t) =1

between the Poincarseries of the ‘symmetric’ and ‘skew symmetric’ algebras.
Let us remark that the above identificatiaff’ ~ 1" was realized in [G1] by means of

projectors
Piver

whose kernels are judt!. This implies that the spacdéc”) and I are complementary.
Moreover, the differentiald ands are realized in [G1] directly in terms of these projectors.

We say that an element® y € A ® A" is given in a canonical (or base) form
fx®yel™ ®I1™, ie. itis realized as a sum of products of ‘symmetrized’ and ‘skew
symmetrized’ elements. In virtue of [G1] any element4df’ @ A” can be represented in a
canonical form.

Let us now compare these complexes with the de Rham complex constructed in [WZ].
By applying the de Rham differential to the produgty;, . . . x;, one obtains, by virtue of the
Leibniz rule, a sum whose arbitrary summand is of the form

Xiy Xy« o Xip  AXj, Xi g oo X, I1<p<m.

(The sign® is systematically omitted.) Here;} is a base of the spadé equipped with a
Yang—Baxter operator of the Hecke type.

The second step of the procedure consists of moving the faetotadithe right side (for
concreteness). So, the problem arises of finding a moving which would be compatible with the
differential and would lead to a flat deformation of the initial differential algebra. If, moreover,
one wants to restrict the differential to a quantum variety it is necessary to coordinate such a
movement with constrains arising from the system of equations defining the variety in question.
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Nevertheless, such a problem does not appear for the Koszul complex (2.1) since its
differentiald takes only one (namely, extreme) factor of the spHtketo the algebrad. So,
one should not transpose the elements fiormand their differentials.

We can say that the Koszul complex from [G1] and the de Rham one from [WZ] are formed
by the same terms. The difference is that all elements of the Koszul complex are represented
in the canonical form. Moreover, it is easy to see that the differentials of these two complexes
are proportional to each other on each term (and the coefficients are not trivial). This implies
that their cohomologies are isomorphic (recall thas generic).

Since the cohomology of the Koszul complex is trivial (apart from @e) term) we
obtain that it is also true for de Rham complex from [WZ] (a quantum version of the Péincar
lemma).

Let us remark that this scheme can be extended to other couples of sublspasssciated
to the QYBE (including non-quasiclassical cases) but the crucial problem is to show that the
associated spacéé”) andIl” (resp.,lﬁ”) and[}) are complementary (cf [DS]).

3. De Rham-type complex on quantum hyperboloid

Let us pass now to a quantum hyperboloid. Consider thelQG!(2)) generated by the
generatorsY, H, Y subject to the well known relations (cf [CP]). Let us fix a coproduct and
the corresponding antipode and consider the sgif)(&/(2))-moduleV = V4.

In order to define a quantum hyperboloid we should fix a badé and write down the
system of relations on the generators compatible with action of the QG in question. However,
we want to represent this system in a symbolic way without referring to its specific coordinate
form.

We need only the fact that the fusion ring fof, (s/(2))-modules is exactly the same
as in the classical case (we consider only the finite-dimensiopal (2))-modules which
are deformations of the/(2)-modules). Thus, iV; is the spini U, (s/(2))-module then the
classical formula

Vi® V= Vi
is still valid although the Clebsch—Gordan coefficients (which depend on a base} are
deformed.

In particular, we have
V2 =Vo@ Vi@ Va.

We keep the notatioki for the initial space andf; for the component itV ®2 isomorphic toV .
Let us fix in the spaceg, Vy, V1 andV, some highest weight (h.w.) elementsvg, v1 andvy,
respectively, and impose the relations (which are the most general relations compatible with
action of the Q@U, (s/(2)))

vo=c vy = hv. (3.1)
Herec € k andh € k are some constants. One can now deduce the complete system of
equations by applying to the second relation the decreasing op&ratdr, (s/(2)).

Let us denoted;;, as the algebra defined by (3.1) and derivative relations.

This algebra possesses the following property: it is multiplicity free. More precisely,
any integer spin module occurs once in its decomposition into a direct sum of irreducible
U, (sl(2))-modules. Moreover, any elementﬂf;q can be represented in a unique way as a
sum of homogeneous elements belonging to the compomeatsy ® (a proof of this fact can
be deduced, for example, from [GV]). This representation will be caltbnical or base
Note that element® is a h.w. one of the componeiit.
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We treat a particular case of the algebra in question, namgjly as ag-analogue of
a commutative algebra and call quantum hyperboloidf ¢ # 0 andquantum conéf
¢ = 0. Since thesl/(2)-modules/(2)®? is multiplicity free we can introducg-analogues
I of symmetric an skew symmetric subspaces!®)®? by setting similarly to the classical
case

L=Vo® V> and I_=V.

Let us emphasize that the corresponding algebtas = T(s/(2))/{Is} are flat
deformations of their classical counterparts.

We will need also a-deformed (braided) Lie bracket. It can be defined as a non-trivial
map

[,],: V2 >V

(V = s1(2) as linear spaces) beingl, (s/(2))-morphism. By this request the bracket is
defined in a unique way up to a factor.

Remark 1. Let us remark that for the Lie algebrgs= si(n), n > 3 theg-moduleg®? is not
multiplicity free any more: it possesses two components isomorplgigtself: one belongs

to the symmetric part @f®2 and the other one to the skew symmetric part. This is the reason
why it is not so evident what agganalogues of the symmetric and skew symmetric algebras
of the spacg. However, there exists a subspdcec g?z whereg, = sl(n) as vector spaces
but equipped with &/, (s!(n))-module structure such that the quadratic algeliiéey,)/{I-}

is a flat deformation of the symmetric algebragofcf [D]). A more explicit description of

can be given by means of the so-called reflection equation (RE)

SLiSLy — L1SL1S =0 (3.2)

where S is a solution of the QYBE (here of the Hecke type} L ® id and L is a matrix
with matrix elementgl?). The quadratic algebra defined by the system (3.2) is usually called
RE algebra.

Let us remark that the RE algebra is covariant w.Li, (sI(n)) (cf [IP]) and it is a flat

deformation of its classical counterpaBym(W) whereW = span(//) (cf [L]). It is not
difficult to see that the spad& is a sum of two irreduciblé/, (g)-modules: one-dimensional
one with a generatof = tr, L wheretr, is theg-trace ands? — 1-dimensional one which can
be identified withy, above. By killing the componehti.e. by passing to the quotient of the
RE algebra over the idedl}) we get exactly algebra mentioned abo¥gg,)/{/-}. In other
words, the spacé_ is defined by the relation (3.2) but with one component less.

Moreover, by means of the RE algebra one can get an algebra looking like the enveloping
algebra ofg-deformed Lie algebra/(n) introduced in [LS]. Before killing the compondriet
us realize a shift’ — I/ +ks/. Then instead of a graded quadratic algebra we get a filtered
algebra, defined by quadratic-linear relations. Now by Killihgve get a quadratic-linear
algebra withn? — 1 generators. This is just another realization of the enveloping algebra
from [LS] (if in the latter algebra we replace the Casimir element by a constant, ¢f [LS]) and a
flat two-parameter deformation 8fym(g) whose existence was stated in [D]. (However, to get
a reasonable quasiclassical limit we should replace the paranteterthis quadratic-linear
algebra byi/(g — 1).)

If g is a simple Lie algebra different fromi(n) its tensor square is multiplicity free. This
allows one to define @a-deformed Lie bracket requiring it to be a non-trivial morphism in the
category ofU, (g)-modules (this defines the bracket uniquely up to a factor) and to introduce
the enveloping algebra of the corresponding ‘braided Lie algelgra’ Deformed analogues
of the symmetric and skew symmetric algebras of the space also well defined. However,
these algebras are not flat deformations of their classical counterparts (cf [G2]).
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Remark 2. Let us emphasize that the classical counterpéfjt of the algebraAg,, contains

only polynomials restricted to the hyperboloid (or the cone). This is the reason why its
properties and those of the function algebra on the sphere are similar: a passage from one
algebra to the other one can be realized by a change of base. For example, this passage does
not change the cohomology of the de Rham complex (see below).

Let us setQ® = Ap,- Our next step is to define the spaces of first- and second-order
differential forms over this algebra. First, consider the tensor products

A=A, 0V and A2 = 6, ® V7.

Their second factors are treated as pure differentials (say the elensente Al is treated
asxdy and inx ® y € A? the factory e v/ is a sum of products of two pure first-order
differentials). The markstands for a pure first-order differential term and thatands for a
pure second-order differential term. Thus, the sgat@esp. V') is isomorphic to the space
V, itself; the isomorphism is defined by

dx; — x;(respdx; ® dx; — x; ® x;).
Note that we treat the vector spacesas leftA; -modules. We do not endow their sum
®A! with any algebraic structure. So, we do not need any transposition rule for the elements
of Ag, and their differentials.

Let us introduce now the first- and second-order differential forms on the quantum
hyperboloid by

Qb = AM{(V ® V')o} Q% = A2/{(V @ V{)1+ (vo — ©) ® V{}.

Here the terms in the denominators are not ideals but onlyligftsubmodules of* andA?,
respectively. The notatiofV ® V’); means that in the produét ® V' we take the spiri
component (similarly fo(V ® V;");). And (vg—c)® V;’ stands for the second-order differential
forms containingyy — ¢ as a factor.

To make this construction more explicit let us represent it in a base form (by restricting
ourselves to the classical case since it does not matter what case, classical or quantum we
deal with). Letu, v, w be the usual base in F@(2)*) = Sym(s/(2)). Then the above
denominators are generated respectively by

2u dw + 2w du + vdv
and

2uey +vey uez — weq 2wey + ves CLuw + 2wu + vv — ¢)e; i=123
with e =dudv—dvduy e;=dudw —dwdu e3=dvdw —dwdv

(we suppose here thag = 2uw + 2wu + vv).

We have defined the spac®$, i = 1, 2 as some quotients. Now, we want to define the
differentials in some bases of these spaces similarly to the Koszul complexes discussed above.
To define such bases we realize a spectral analysis of the s@ices. decompose these
spaces into a direct sum of irreducibl&g2)-modules. First, describe the components in the
products

VeV ViV’ Vi C A, i=23 ...
which are surviving in the quotient spa@e. It is evident that in the produdt ® V' only the
componentsV ® V’); and(V ® V'), survive since by construction the componénitg V')
is equal to zero in the quotient.

By a similar reason in the produgh ® V’ the componentsV, ® V'), and(V, ® V)3
survive and thatV, ® V'), is equal to zero modulo the termsiof® V' = V’. This can be



4190 P Akueson and D Gurevich

explained as follows. The elements©of2(V ® (V ® V')o) are trivial inQ* by construction.
Herep stands for the product i, the indices, 1, 2 mean, as usual, that the opeyatsr
applied to the first two factors. By reducing any element of the produgt to the canonical
form we get a sum of an element frovh ¢ V2 and another one from This completes the
proof.

Similarly, in the producV; ® V' the componentV; ® V');_1 is equal to zero modulo the
terms belonging t&/; ® V', j < i. Thus, we have shown the following.

Proposition 1. The base in thel{, -module' is formed by

v’ @V ® V)i R (V2® V)23 @ (V3®@ V)34 etc
In a similar way one can perform a spectral analysis om@g-modulesz2 and describe
its base.

Proposition 2. The base in thetlf,q-modulesz2 is formed by
vy @V ® Vi)o2 B (V2@ Vi)3 B (V3@ V)4 etc
An evident difference between the modut@$ and Q2 consists in the following. The
moduleQ? is defined as a quotient of?> over the sum of two submodules. Therefore, two
components in the product ® V/’, i > 2 disappear and only one survives. The component

V1 ® V' is exceptional because the relatian= ¢ does not lead to any constraint for it. Let
us consider now the de Rham complex in the classical case

0 %ot %2 Lo (3.3)
Since the differential commutes with th&?2) action it takes any irreduciblg (2)-module to
either anisomorphigl (2)-module or 0. Using propositions 1 and 2 itis not difficult to describe

the irreducibles!(2)-modules ofQ’, i = 0, 1, 2 belonging to Ker! and those belonging to
Imd.

Proposition 3. 1. InQP the only trivial module, i.e. that consisting of the elementsalongs
to Ker dp.

2Kerdy =V'®&(VRV):®(Va®V)3d (Va@V)ad...
and therefore the modules
VeV (V2@ V)2 (V3@ Vs...
go to isomorphic modules 2.
Corollary 1. The cohomology of the complex (3.3) is the following:
dmH’=1 dmH!=0 dimH? = 1.
HCis generated by 1 anfi? is generated byV ® V;')o.

Thus, it is just the cohomology of the sphere (see above, remark 2).

Let us now extend the de Rham complex (3.3) to the quantum case. The terms of the
quantum complex have justthe same irreducible components as their classical counterparts (but
these components becortig(s/(2))-modules). Now we should define differentials. Define
them on each term by requiring them to &ig(s!(2))-morphisms and to be flat deformations
of the classical differentials (by this demand the differentials are defined onlg#@eh(2))-
module in a unique way up to a factor). Finally, we have by construction exactly the same
cohomology as in the classical case.

Comparing our construction with that from [P2] we repeat that the latter is not any flat
deformation of its classical counterpart while our deformation is flat by construction. On the
other hand, we have lost the structure of an algebra in4f)emoduleQ = ®Q' and the
Leibniz rule for the differentials.
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4. Quantum tangent space and related structures

In this section we introduce the tangent space on quantum hyperboloid and discuss some
derived structures (metric, connection). We also discuss a way to realizedb®rmed
tangent space by means of ‘braided vector fields’. Hopefully, this approach is valid for other
quantum varieties like quantum orbits considered in [DGK]. As in the previous section we
avoid using any specific base form.

First, we consider a sphes8 given byx? + y? + z2 = ¢. Let Fun(5?) be the space of the
polynomials restricted to the sphere and () be the space of left vector fields. The latter
space is generated as a left F§A)-module by three infinitesimal rotations

X = yd, — z0, Y =z0, — x0, Z =x09y — yox.
It is easy to check that the vector fields Y, Z satisfy the following relation:
xX+yY+zZ=0 4.1)

(x, y, z are treated here as operators via the product operator in the algebs?HurSo, as
a Fun($?)-module Veci(S?) can be realized as the quotievtty N where

M={aX+bY+cZ, a,b,ceFun(s?)
N={f(&xX+yY+zZ), f € Fun(§?)}.

In what follows we call this Fuis?)-moduletangent spac@nd denote i (5%). In fact it
is simply the Vec(S?) space but we want to emphasize by this notation that we ignore the
operator meaning of this space. As usual, the tangent space is introduced in local terms as a
vector bundle. However, in the quantum case such a local description is not possible.

In a similar way there can be introduced the tangent sffgé#) on a hyperboloidH.
Namely, it can be realized as the quotient of a t#g-moduleM over its submodule

N={fQCuW+2wU+vV)}.

This is also motivated by the operator meaning of the generators: the genératar®y’ are
represented in the algebra Fui) = Aj, by infinitesimal hyperbolic rotations.

Note that the symmetric algebra of the tangent sgac®) can be treated as the function
algebra on the underlying four-dimensional algebraic variety embedded in the six-dimensional
space

(span(x, y,z, X, Y, Z))*

this variety is defined by the equation of the sphere and that (4 iR it is true forc > 0).
A similar description is also valid for the symmetric algebra'¢#).

Unfortunately, there does not exist any quantum analogue of this algebra being its flat
deformation (see below). Nevertheless, a reasongbiformation of tangent space equipped
with an appropriated module structure exists. The aim of this section is to describe this
deformation, i.e., to introduce the tangent space on the quantum hyperboloiﬁl@qsmmdule
and to realize its elements as operators looking like vector fields on the classical object.

In order to do it we represent the defining relation of the tangent spédé in a symbolic
way:

(VeV))=0 4.2)
(hereafter the markdesigns the space spéii, V, W)). We treat the tangent space on the
hyperboloid as a leftdg ;-module (as a rightdg ;-module the tangent space can be given by
(V' ®V)y=0).

It is evident that if we want to define the tangent space on the quantum hyperboloid as a
flat deformation of its classical counterpart we should use the same formula (4.2) but in the
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category ofU, (s/(2))-modules. Let us be a precise. First, we introduce thedgftmodule
Al asin the previous section but with another signification of the spac&his means that the
generators @, dv, dw are replaced by, V, W, while theU,, (s/(2))-module structure o¥’

is unchanged. Second, we definetifwegent spacen the quantum hyperboloid as its quotient
like Q! above (fortunately, both the tangent and cotangent spaoé@asmdules are defined
by the same equation (4.2)). Let us denote the quotient objeEtHy) reserving the notation
H, for the quantum hyperboloid.

Proposition 4. The. A5 q-moduIeT (H,) is a flat deformation of its classical counterpart.

Proof follows immediately from the explicit construction of the base of this quotient given
in the previous section.
Let us now assign an operator meaning to the elements of the FpaGe.

Proposition 5. There exists a map
BT (Hy) ® Ay, — Ay, (4.3)
such that the diagram
0, ®T(H) ® Ay, —> T(Hy) ®Ag,
\ \
0g ® Ay — 0g
is associative. Here the eIementsqu act onAg, (the low arrow) by the usual product.
The vertical arrows are defined by meansgodnd the top one makes use of thg -module
structure ofT (H,). (Thus, the mas realizes an action of the spad& H,) on the algebra

0g°)

This proposition allows us to realize the tangent space as an operator algebra where the
elements of the aIgebragq act via the product operator. We call the elements of the space
T (H,) (left) braided vector field& the operatorg (V') satisfy the relations

BIBV' @VN1—0oB[.1;(V®V)1=0

where [, ], is theg-deformed Lie bracket introduced in section 3 ané & is a non-trivial
factor. This means that realizes a representation (in the sense of [LS]) of the braided Lie
algebra defined by the brackdt, ], with a proper factop.

Proposition 6. There exists a map from the previous proposition such that the elements of
T (H,) being represented vig becomes braided vector fields.

We refer the reader to [A] for proofs of these statements (the main idea of the construction
has been suggested in [DG2]). Here, we only want to say that the problem is to find good
candidates for the role gf-analogues of the infinitesimal hyperbolic rotatidnsV, W. They
arise from the adjoint action of thg-Lie algebrasi(2), onto itself (note that the operators
X, H, Y coming from the QQ@J, (s/(2)) do not satisfy the relation (4.2)).

Let us remark that similar statements are valid for the tangent space treated as a right
Aj,-module.

Thus, we have an embedding

s1(2), <= T(H,) (4.4)

where the tangent space is realized as braided vector fields space. This embedding is a
deformation of its classical counterpart which is the simplest example of a so-called anchor
(recall that an anchor consists of an varig¢fy a Lie algebragy and an embedding @finto the
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vector field space on). This is why we call the embedding (4 gdantum anchom spite of
the fact that the whole of the spa€&H,) is not equipped with any-deformed Lie bracket.
We consider also the datd (H,), A5, ) as a partiay-analogue of Lie—Rinehart algebras [R]
(‘partial’ means here that the spaf&H,) is not equipped with anyy-Lie algebra’ structure
properly coordinated with the product operator in the algeztgg).

After having represented the spatéH, ) by braided vector fields itis natural to introduce
the space of braided differential operators as that generated by the braided vector fields and the
elements of4; , treated as zero-order operators (see above). In the classical case this space is
spanned by the subspaces

®n
61 V™.

The fact that this algebra is closed w.r.t. the operator product is assured by the Leibniz rule:
by means of this rule it is possible to represent a product of two elements of this form as a
linear combination of such elements.

Unfortunately, in the quantum case any form of the Leibniz rule does not exist (this fact can
be checked by direct calculations). Roughly speaking, this means that there does not exist any
reasonable way to transpose the elements of the algcqplrand those of the spadé€. This
is also the reason why there does not exist gagymmetric algebra’ of the quantum tangent
spacel (H,) being a flat deformation of its classical counterpart (see above). Without going
into detail we say only that the Yang—Baxter operator (arising from the univRrsadtrix)
being at first glance a good candidate for the role of such a transposition leads to a non-flat
deformation of the classical symmetric algebra. (See also below, remark 3).

Let us pass now to the problem of constructing-deformed metric on the quantum
tangent space. To distinguish the quantum tangent spaces equipped with the left and right
qu-module structures we will use for the first (second) one the notdti@h,); (7 (H,),).

Definition 2. We say that an operator
() 1 T(Hy) @ T(Hy)r — Ag,

is quantum (pseudo-)metric if it commutes with left and right multiplication by the elements
from A, in the following sense:

(fP.Q)=f(P.Q)  (P.Qf)=(P.Q)f VfeA,  PecT(H)
0 € T(H,), (4.5)

(in particular, P, Q € V’) and if it is compatible with the action df,(s/(2)) . The latter
property means, as usual, that

Z{,) = (YA(Z) VZ e Uy(s1(2)
(this relation is treated as operator oneT(H,); ®« T (H,),). A metric is called symmetric if
HV'®V) =0. (4.6)

Proposition 7. There exists the unique (up to a factor) symmetric quantum metric on the
quantum hyperboloid.

A proof of this fact is given in [A]. We do not reproduce it here. Let us indicate only the
crucial idea of the proof. First, it is necessary to describe all pairings
() VeV - A,
compatible with thel, (sI(2)) action. In order to do it we should decompdge® V' into

a sum of the irreducibl&/, (s/(2))-modules. This gives rise to the following two-parameter
family of U, (s/(2))-covariant pairing

HV'®V)=aV, (V' ®V)=0b
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completed by relations (4.6) (as usual, the relations are given in a symbolic way). On the
second step we should impose the condition

HBEVRVHeV =0
which results in arelation between the parametersdb. It remains to verify that this relation
is compatible with the following one

V'RV ®V)=0
and then to extend the metric to the whaleH, ), ®; T (H,), by using the relations (4.5).

Let us emphasize that although we call the above pairing metric (‘pseudo’ means only
that its classical analogue is not positive definite) it is well defined on the product of a left and
a right Ag -modules. If we want now to define a similar pairing between two left (or right)
Aj,-modules we should proceed in the following way. Let us identify the left tangent space
T (H,); and the right ond (H,),, i.e. define a map

a:T(Hy); — T(Hy),
being aU, (sl (2))-isomorphism.
Then on setting by definition
(X,Y)=(X,a(Y)) X, Y e T(Hy)
we get a pairing between two ldft, (s/(2))-modules. Atfirst glance the mapcan be defined
by means of the YB operator arising from the @G (s/(2)). However, this operator which
establishes a bijectivity between frdg -modulesd;, ® V' andV’'®.4;, is notany bijectivity
on their factorsT (H,); andT (H,), since it does not take the denominator corresponding to
T (H,); to that corresponding td (H,),. We suggest another way to define sudh,&si(2))-
isomorphismy.

Letus representthe both objects as sunig,f! (2))-modulesin the spirit of proposition 1.

Then theU, (s/(2))-morphisms

a:(VeV)ii— (VeVi VeV — (V' eV)
Vo®@ VD)= (V® Vo)s...
are defined uniquely up to a factor on each couple of components (for the generatinyy space
we puta = id).
However, we can reduce this freedom by identifying the elements from

(VeV), and (V'®V) (Vi® Vi1 and (V' ® V))in i=23...
which coincide if we replac&’ by V. As for the components
(VeVh, and (V/ ®@V) V;®V’), and (V' ® V)); i=273...

their elements are identified if this operation leads to opposite images. It is not difficult to
see that in the classical case this identification and that defined by the flip coincide (it is the
motivation of our method).

Remark 3. Letus remark that for algebras looking like thdg  but connected to aninvolutory

YB operator an identification of their left and right modules can be realized by means of this
operator. Non-involutivity of the YB operator arising from the @¢(s/(2)) which leads to

the above defect prevents us also from a reasonable definition of a tensor pyégdect M.

of two (say) leftd; -modules. The problem is that there do not exist any reasonable way to
transpose the factof € Aj, in the product

m1 Q@ f mo mi € My mo € My
on the left side so that the tensor prod@cj«bq is still associative and the modulé; ® 1, M>

is a flat deformation of its classical counterpart assumbligand M, to be flat deformations
of their classical counterparts. For an involutory YB operator this problem does not appear.
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Letus now discuss the problem of defining a (torsion-fiég}!(2))-covariant connection
on the tangent spacg(H,). Such a partially defined connection was introduced in [A].
‘Partially defined’ means here that the operators of covariant derivatives are defined only on a
subspace of (H,), namely onV’. More precisely, there existslg, (s/(2))-morphism

V:T(H) ®V' — T(Hy)
XQ®Y > VxY
such that
VixY = fVxY X € T(Hy) YeV' [fedAg,
and
a'Vy, X; =a’"[X;, X1, X, X; eV 4.7)

wherea’ X; ® X; € V1 and [, ], is the above-mentionegtdeformed Lie bracket.

We would be able to extend this (partially defined) connection to the wih@ig) ® T (H,)
if we could extend the bracket ], to the wholel’ (H,) and to understand what is the enveloping
algebra of this extendeg-deformed Lie algebra (we need this in order to write suitable
expressions in the lhs of (4.7)). Unfortunately, we do not know any way to do this.

Let us remark that all naive extensions of the brackgj [are not compatible with the
equation (4.2).

There exist a number of papers introducing the notions of quantum metric and connection
in another way (cf [HM] and the references therein). Our approach is motivated by our desire
to control the flatness of deformation of classical objects (see also the next section).

Completing this section, we want to mention a very important property ofifiemodule
T (H,) (if ¢ # 0): itis projective in the category df, (s/(2))-modules. This means that it is
a direct componentin a freégq—module and there exists a projector of the latter one onto the
module in question being &, (s/(2))-morphism (cf [A]).

Some other projective modules over quantum sphere have been considered in [HM]. We
plan to devote a subsequent paper to quantum projective modules in a more general context.

5. On guantum gauge theory

There exist two approaches gedeformed gauge theory. One of them deals with the usual
manifolds (varieties) and deforms only a structure of fibres. The second approach deals with
quantum varieties looking like the quantum hyperboloid above.

First, let us evoke the paper [S] as the most advanced contribution to the first kind of
approach. The gauge potentig} introduced in this paper is a vector field

Au(x) = AL (D)X,

with values in the quantum Lie algelyg. Hereg, is theg-deformed Lie algebra = si(n) (or
su(n)) as defined in [LS] (note that the case- 2 was previously considered in [DG1]). Thus,
the factorsX; are elements of this quantum Lie algebra and thq§ec) are usual functions
depending on a ‘space-time point(or more generally, on a point of a usual variety).

In virtue of [LS] the quantum Lie algebig, is realized as a subspacelif(g) so that it
is stable w.r.t. the adjoint action of the Q&G (g) on itself and

AX) =X, ®C+u! ® X,

whereA is the coproduct i/, (g), C is a central (Casimir) element of, (g) andu{ are some
elements o, (g).
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The crucial point of any gauge theory is a transformation law plunder an action of a
gauge group or a gauge Hopf algebra. In [S] it is supposed to be

A AL(x) = h(x) @ Aus(h(x) ) — o s(C) 19, (h(x) )5 (h(x)2) (5.1)

wherew is a coupling constant,is the antipode (x) is a function ofx with values in the QG
U,(g) and

h(x)@) ® h(x)2) = Ah(x).

However, a problem arises to ‘distribute thelependence of the coprodutt’(x)) between

two factors’ in the second term of (5.1) so that it becomes an element of the gpémea

fixedx (let us emphasize that it is not a trivial task). Such a distribution has been found in [S].
Nevertheless, it was indicated in [S] that if we consider a (say) bosonic fi¢ld

then its defining relations cannot be introduced in a way compatible with quantum gauge

transformations. We will try to explain this as follows. Let us consider the ‘quantum covariant

derivative’ of the fieldyr

D/ﬂ/f = 3/41ﬁ + ;BIO(A/I.)w
wherep is the representation of the QI (g) corresponding tay andg = ap(s(C)) is a
constant. In the rhs of this formula the operaigrcommutes with thédJ, (g) action but the
operatorp(A,) does not. This implies that such a covariant derivative cannot preserve the
relations valid fory. (We would have a similar effect in a supertheory if we allowed the
summandi, to be an odd operator.)

Let us discuss now the approach of the second kind, i.e. we suppose that the base variety is
quantum as well. An axiomatic way to suggest such an approach was considered in numerous
papers. We do not give here an exhausting list of these papers and only refer the reader to the
papers [S] and [BM] where such a list is given.

We will point out the common features of all of them. First, a quantum variety in question
is given in a way which does not allow us to control the flathess of deformation (as a rule
this problem is not even evoked). Another crucial defect of this approach is that a connection
is introduced habitually via a Leibniz rule similarly to the classical case but as we have seen
this implied the non-flatness of the deformation. Another reason of the non-flatness of the
deformation is that in the formulae analogical to (5.1) the second summand does not belong
usually to the fibre.

This explains our scepticism about a possibility of constructing a quantum gauge theory
related to the Q@/, (g) which would be a flat deformation of its classical counterpart.

Anyway, it would be desirable to precede any attempt to construct such a theory by a
quasiclassical study in the spirit of [Ar] confirming or refuting the possibility of doing it.
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